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In this paper, we introduce a new approach to obtain a novel numerical solution of nonlinear programming problems (NLP) which the objective function (functions) or constraint function (functions) are non-smooth ones. This technique is based on a new piecewise linearization approach. In fact, we transfer the nonlinear programming problem (NLP) to a variational problem that would reduce the new approximated problem to a linear programming problem (LP). Then, the approximated solution of the original problem would be obtained by the LP problem. Finally, numerical examples are given to show the efficiency of the proposed approach.  
Keywords:	Nonlinear programming Linear programming Piecewise linearization Non-smooth function © 2016 The Authors. Published by IASE. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). 
		
1.	Introduction *A wide range of problems arising in practical applications can be formulated as nonlinear programs (NLPs). This includes chemical engineering (Grossmann and Sargent, 1979; Corsano et al., 2011), water network problems (Misener and Floudas, 2012), gas (Bragalli et al., 2006), energy (Murray and Shanbhag, 2006), time-loss in the paper industry (Harjunkoski et al., 1999), concrete structure design (Guerra et al., 2011), load-bearing thermal insulation systems (Abhishek et al., 2010), medical applications (Pardalos et al., 2004) and so on. There are some methods and algorithms available in the literature for the case in which the objective and constraint functions are convex and differentiable, e.g. the optimal point can be obtained using Karush-Kuhn-Tucker conditions. Furthermore, the penalty and barrier methods can be used for constraint optimization problems. Although, some other methods based on linear programming exist, such as the method of approximate programming (Griffith and Stewart, 1961; Kamyad et al., 2005). After Han proved local and global convergence of SQP methods in (Han, 1976; Han, 1977), a large amount of research papers have been produced on SQP-based techniques. However, all of the aforementioned techniques are for differentiable (smooth) or convex problems and some optimality 
                                                 * Corresponding Author.  Email Address: mazarei_mehdi@yahoo.com (M. Mazarei) http://dx.doi.org/10.21833/ijaas.2016.07.014 2313-626X/© 2016 The Authors. Published by IASE.  This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)  

conditions are necessary such as continuity, convexity and differentiability. But, many important practical problems are naturally modeled as non-smooth NLPs and these methods are inadequate to solve them. The non-smooth NLPs would be useful in much application of sciences. Some investigations have been done in non-smooth programming problems (Rockafellar, 1994; Nesterov, 2005). However, these techniques are not efficient for non-convex non-smooth optimization problems. It is worthwhile to mention that many well-studied optimization problems can also be naturally viewed as non-convex and non-smooth NLPs. In this study, we have proposed a new technique to solve nonlinear non-smooth programming problems. The rest of this paper is organized as follows. In next section, we introduce a technique to find the best piecewise linearization of nonlinear functions. In section 3, we explain the equivalency of non-linear and linear programming problem. In Section 4, we illustrate some numerical examples to demonstrate the efficiency and accuracy of the proposed approach.  
2.	 A	 new	 piecewise	 linearization	 of	 nonlinear	
function	The linearization of nonlinear systems is an efficient tool for finding approximate solutions and treatment analysis of these systems. Remark 2.1: Since, every non-smooth function is a nonlinear function, we consider nonlinear functions.  Let ܣ :ܨ ⊆ ܴ → ܴ be a nonlinear function. We suppose that ݔ ∈ ܣ ⊆ ܴ and the subset A is 
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compact. Our aim is to approximate the nonlinear function ܨ by a piecewise linear function as follows (Eq. 1):  ܨே(ݔ) =∑ (ܽ + ܽଵݔଵ + ܽଶݔଶ + ⋯ +ேୀଵ ܽݔ) ܺ(ݔ)    (1) ܽ ∈ ܴ; ݅ = 1, 2, … , ܰ   where, ܣ is ݅th subset in partitioning of A as ேܲ = ሼܣଵ, ,ଶܣ … , ,݅∀ (ே  ሽ. As we know, this partitioning has the bellow properties:  1ܣ ݆ = 1,2, … , ܣ ;ܰ ∩ ܣ = ∅; ܣ ∈ ܴ, ܣ ≠ ܣ (2 ∅ = ⋃ ேୀଵܣ    also, ܣ is Lebesgue measurable set and ܺ(ݔ) be the characteristic function on ܣ defined as follows (Eq. 2):   ܺ(ݔ) = ൜1, ݔ ∈ ,0ܣ ݔ ∉ (ܣ)ଵܮ                                                    (2)ܣ = ቄ݂: ܣ → ܴ|  ݔ݀|݂| < ∞ ቅ  ܮଶ(ܣ) = ቄ݂: ܣ → ܴ|  |݂|ଶ݀ݔ < ∞ ቅ.   Now, let and them. As we know ܮଶ(ܣ) is a Hilbert space of A with the following inner product (Eqs. 3 and 4):  〈݂, ݃〉 =  ቀ ݔ݀(ݔ)݃(ݔ)݂ ቁଵ ଶ⁄ ; ݂, ݃ ∈ and  ‖݂‖ଶ (3)       (ܣ)ଶܮ = ቀ |݂|ଶ݀ݔ ቁଵ ଶ⁄                                               (4)  
Definition	2.1: We define ܵே(ܣ); (ܰ ∈ ܰ) be the set of all ܨே ∈   .of the form (1) (ܣ)ଵܮ
Lemma	2.1:	For 0<P<q we have ܮ ⊂ ଵܮ .  So, we haveܮ ⊂  .ଶ. We use the norm-1 in the rest of paperܮ
Definition	2.2: If ܨ: ܴ → ܴ is a nonlinear function and ܨே ∈ ܵே(ܣ), we define ‖ܨ − ܨ‖  :ே‖ଵ as follows (Eq. 5)ܨ − ே‖ଵܨ =  ܨ| − ݔ݀|ேܨ                                      (5) Lemma 2.2: The subset ܵே(ܣ) is dens on ܮଵ(ܣ).  Proof: Suppose that F is a nonlinear function that, ܣ :ܨ ⊆ ܴ → ߝ∀  ܴ > (ߝ)ܰ∃0 ∈ ܰ, .)ேܨ∃ ) ∈ ܵே(ܣ)  ‖ܨ − ே‖ଵܨ <    .ߝ
Definition	 2.3: We call ܨ∗ ∈ ܵே(ܣ) the best piecewise linear approximation of F if for any ܨே ∈ ܵே(ܣ) we have,  ‖ܨ − ଵ‖∗ܨ ≤ ܨ‖ − ܨ‖݊݅ܯ  .is the optimal solution of the following optimization problem (Eq. 6) ∗ܨ ,ே‖ଵ   thereforeܨ − ܨ  ே‖ଵܨ ∈ ܵே(ܣ)                                                                      (6) 

Obviously, because 0 ≤ ܨ‖ − :ܨ ே‖ଵ, the optimization problem (6) has optimal solution. To clarify our approach, first we consider a nonlinear functionܨ ܴ → ܴ. Second, we explain this approach for a nonlinear function ܨ: ܴ → ܴ.  (i) Consider the optimization problem  ܨ‖݊݅ܯ − ݂  ே‖ଵܨ ∈ ܵே(ܣ)   where, ܨ: ܣ ⊆ ܴ → ܴ is a nonlinear function and ܣ = [ܽ, ܾ]. As we know [ܽ, ܾ] can be replaced by[0, 1].  Now, we decompose interval [0, 1] to N subintervals ቂିଵே , ேቃ ; 1, 2, … , ܰ (Fig. 1). Since, ܨே ∈ܵே(ܣ), we have (Eq. 7)   ݊݅ܯ ฬ(ݔ)ܨ − ∑ (ܽ + ܾݔ(ݔቂషభಿ, ಿ ቃ(ݔ)ேୀଵ ฬ ଵݔ݀      (7)  Our objective function is a functional. Now, we reduce this functional to a summation as follows (Eq. 8):    ฬ(ݔ)ܨ − ∑ (ܽ + ܾݔ(ݔቂషభಿ, ಿ ቃ(ݔ)ேୀଵ ฬ ଵݔ݀ ≅ଵே ∑ (ݔ)ܨ| − (ܽ + ܾݔ)|ேୀଵ                                         (8)  
 

Fig.	1: Partitioning A to subintervals ܣ. 
	so, the optimization problem (8) is as follows (Eq. 9):  ݊݅ܯ ∑ ݎ| + |ேୀଵݏ ݎ   − ݏ = (ݔ)ܨ − (ܽ + ܾݔ)  0 ≤ ,ݎ ;ݏ ݅ = 1, 2, … , ܰ                          (9)  But, the optimization problem (9) is a nonlinear programming problem. We reduce this problem to a linear programming problem by relation |ݎ − |ݏ ݎ= + ݊݅ܯ  :. So, our optimization problem will be as the following linear programming problem (Eq. 10)ݏ ଵே ∑ ݎ + ேୀଵݏ   s.t  ݎ − ݏ = (ݔ)ܨ − (ܽ + ܾݔ)  0 ≤ ,ݎ ;ݏ ݅ = 1, 2, … , ܰ                       (10)   (ii)  Second, we consider a nonlinear function ܨ: ܣ ⊆ ܴ → ܴ then the optimization problem would be as follows:   ݊݅ܯ หݔ)ܨଵ, ,ଶݔ … , (ݔ − ∑ (ܽ + ܽଵݔଵ +ேୀଵܽଶݔଶ + ⋯ + ܽݔ) ܺ(ݔ)ห݀ݔ   As, we explained in section (i) this optimization problem will be reduced to a linear programming problem as follow (Eq. 11): 
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݊݅ܯ ∑ ݎ + ேୀଵݏ   s.t ݎ − ݏ = ,ଵݔ)ܨ ,ଶݔ … , (ݔ − (ܽ + ܽଵݔଵ + ܽଶݔଶ +⋯ + ܽݔ)  0 ≤ ,ݎ ;ݏ ݅ = 1, 2, … , ܰ  ܰ = ݉ଵ, ݉ଶ, … , ݉                                                   (11)  Where, ݉ଵ, ݉ଶ, … , ݉ are the numbers of subintervals on axises ݔଵ, ,ଶݔ … ,  ., respectivelyݔ
3.	Nonlinear	programming	problem	Now, we consider the nonlinear programming problem as follows:  ݔ)ܨ ݊݅ܯଵ, ,ଶݔ … , ,ଵݔ)ܩ )  s.tݔ ,ଶݔ … , (ݔ ≥ 0; ݅ = 1,2, … , ,ଵݔ)ܩ  ݉ ,ଶݔ … , (ݔ = 0; ݇ = ݉ + 1, ݉ + 2, … , ݈   (12)  where, the objective function F or constraint functionsܩ, ∑ ݊݅ܯ  : are nonlinear functions. According to the previous section, we replace objective and constraint functions by the best piecewise linear functions of form (1). Therefore, the nonlinear programming problem (12) is approximately equal to a linear programming problem as followsܩ ሼܽ + ܽଵݔ + ܽଶݕሽ ܺ(ݔ, ேୀଵ(ݕ   s.t ሼܾ + ܾଵݔ + ܾଶݕሽ ܺ(ݔ, (ݕ ≥ 0; ݅ = 1, 2, … , ݊ே

ୀଵ  ∑ ሼܿ + ܿଵݔ + ܿଶݕሽ ܺ(ݔ, (ݕ = 0; ݇ = ݉ +ேୀଵ1,   ݉ + 2, … , ݈                (13)  Now, according to lemma1, we can approximate objective function F and constraint functions ܩ and ܩ arbitrarily. Then, the objective function and feasible region in nonlinear programming problem (12) is approximated to the objective function and feasible region in linear programming problem (13). This lead to the optimal solution of linear programming problem (12) is the approximated optimal solution of problem (13). This is clear we can improve the accuracy of approximated optimal solution by increasing N.  
4.	Numerical	examples	In this section, we show the efficiency of new technique by some examples.  
Example	 1: Consider following nonlinear smooth programming problem: ݊݅ܯ ݁௫  s.t sin(ݔ) − ݔ ≤ 1  1 ≤ ݔ ≤ 3                                                                    (14)  We may convert interval [1, 3] to [0, 1]. For this purpose, we may define bijective function H(x) as follows: 

:ܪ [1, 3] → [0, ݔ  [1 → ௫ିଵଶ   Now, we have: ݊݅ܯ ݁(ଶ௫ାଵ)  s.t sin(2ݔ + 1) − ݔ2 ≤ 2  0 ≤ ݔ ≤ 1              				(15)  The optimal solution is ݔ∗ = 3. We have used the piecewise linearization of objective function and constraint functions to approximate non-smooth programming problem (15) to a linear programming problem. The optimal solution of approximated linear programming problem for n=10, 20, 50, 100 has been showed in Table 1.  
Table	1: The approximate optimal point of example 1 n Approximate optimal solution10 2.9020 20 2.9813 50 2.9900 100 2.9950  

Example	 2: Consider following nonlinear non-smooth programming problem:  ݊݅ܯ ݁|ଶ௫ିଵ|  s.t sin(ݔ) ≤ 1  0 ≤ ݔ ≤ 1                                                                    (16)  In this example, the objective function is non-smooth function. The exact optimal solution of nonlinear non-smooth programming problem (16) is ݔ∗ = 1.  We have used the piecewise linearization of objective function and constraint function to approximate non-smooth programming problem (16) to a linear programming problem (Figs. 2 and 3). The optimal solution of approximated linear programming problem for n=10, 20, 50, 100 has been showed in Table 2.   
Table	2: The approximate optimal point of example 2 n Approximate optimal solution10 0.9471 20 0.9631 50 0.9802 100 0.9943 

	
Fig.	2: The	piecewise linearization of constraint function of example 2 (n=100). 
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Fig.	3:	The	piecewise linearization of objective function of example 2 (n=100) 
	
Example	 3: Consider following nonlinear non-smooth programming problem:  ݔ|  ݊݅ܯ − ݕ  ଷ| s.tݕ − ଶݔ ≥ ݕ 0 + ݔ − 2 ≥ 0 0 ≤ ,ݔ ,ݔ) In this example, the objective function is nonlinear non-smooth function. The exact optimal solution of nonlinear programming problem (17) is  (17)                                                                        ݕ ∗(ݕ = (1, 1).  We have used the piecewise linearization of objective function and constraint functions to approximate non-smooth programming problem (17) to a linear programming problem. The optimal solution of approximated linear programming problem for n=10, 20, 50, 100 has been showed in Table 3.  
Example	 4: Consider following nonlinear non-smooth programming problem: ݔ   ݊݅ܯଶ + ݕ ଶ s.tݕ + ଶݔ − 1 ≤ ݕ 0 − ݔ| − 1|ଷ ≥ 0 0 ≤ ,ݔ   (18)                                                                   ݕ
Table	3: The approximate optimal point of example 3 n Approximate optimal solution 10 (0.8103, 1.172)  20 (0.9326, 1.0740)  50 (0.9720, 1.0337)  100 (0.9874, 1.0025)  

	In this example, one of constraint functions is non-smooth function. The exact optimal solution of nonlinear programming problem (18) is (ݔ, ∗(ݕ =(0.35, 0.27).  We have used the piecewise linearization of objective function and constraint functions to approximate non-smooth programming problem (18) to a linear programming (Figs. 4 and 5). The optimal solution of approximated linear programming problem for n=10, 20, 50, 100 has been showed in Table 4. 
5.	Conclusion	We have solved the nonlinear smooth and non-smooth programming problems by introducing a 

novel technique. Since, the competing methods in the literature need differentiability of objective and constraint functions, none of them is appropriate to solve the non-smooth problems. In this approach, we transfer the nonlinear programming problem to a variational problem. Then, we reduce it to a linear programming problem (LP). By solving the LP programming problem, we obtain the approximated solution of the original problem.	 
Table	4: The approximate optimal point of example 4 n Approximate optimal solution10 (0.3188, 0.2290)  20 (0.3385, 0.2571)  50 (0.3413, 0.2643)  100 (0.3482, 0.2676)  

 
Fig.	4:	The	piecewise linearization of constraint functions of example 4 (n=100)	

 
Fig.	5:	The	piecewise linearization of objective function of example 4 (n=100).	
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